

Antiepileptic Drugs In Neurosurgery

Presenter: Dr. Siddhartha Sahoo Moderator: Dr. Manmohan Singh Dr. G.D Satyarthee

DEFINITIONS

 Seizure: the clinical manifestation of an abnormal synchronization and excessive excitation of a population of cortical neurons.

 Epilepsy: a tendency toward recurrent seizures unprovoked by acute systemic or neurologic insults.

American Epilepsy Society

Antiepileptic drugs

- A drug which decreases the frequency and/or severity of seizures in people with epilepsy
- Treats the symptom of seizures, not the underlying epileptic condition
- Goal—maximize quality of life by minimizing seizures and adverse drug effects

American Epilepsy Society

History

- Modern Treatment Of Seizures Started In 1850 With Bromides
- 1910: Phenobarbital
- 1940: Phenytoin (PHT)
- 1968: Carbamazepine (CBZ) For Trigeminal Neuralgia, in 1974, Approved For Partial Seizures.
- 1978: Valproate
- 1999: Levetiracetam

Cellular Mechanisms of Seizure Generation

AEDs in Neurosurg

Excitation (too much)

- Ionic-inward Na⁺, Ca⁺⁺ currents
- Neurotransmitter: glutamate, aspartate

Inhibition (too little)

- Ionic-inward Cl⁻, outward K⁺ currents
- Neurotransmitter: GABA

The neuronal excitation

Glutamate

Brain's major excitatory neurotransmitter

Two groups of glutamate receptors

Ionotropic - fast synaptic transmission

- NMDA, AMPA, kainate
- Gated Ca⁺⁺ and gated Na⁺ channels
- Metabotropic slow synaptic transmission
 - Regulation of second messengers (cAMP and Inositol)
 - Modulation of synaptic activity

GABA

- Major inhibitory neurotransmitter in the CNS
- Two types of receptors
 - GABA_A
 - Post-synaptic
 - Specific recognition sites
 - Linked to Cl⁻ channel
 - GABA_B
 - Pre-synaptic reduction in calcium influx
 - Mediated by K⁺ currents

Diagram of the GABA_A receptor

Classification

Pharmacokinetic Principles

Absorption: entry of drug into the blood

- Essentially complete for all AEDs (*except gabapentin*)
- Timing varies widely by drug, formulation, patient characteristics
- Generally slowed by food in stomach (CBZ may be exception)
- Usually takes several hours

(importance for interpreting blood levels)

Pharmacokinetic Principles

- Elimination: removal of active drug from the blood by metabolism and excretion
 - Metabolism/biotransformation generally hepatic; usually rate-limiting step
 - Excretion mostly renal
 - Active and inactive metabolites
 - Changes in metabolism over time
 - (Auto-induction with carbamazepine) or
 - with polytherapy (enzyme induction or inhibition)
 - Differences in metabolism by age, systemic disease

AED Serum Concentrations

- Optimizing AED therapy
- Assessing compliance
- To monitor pharmacodynamic and pharmacokinetic interactions.
- Most often individual patients define their own "therapeutic range" for AEDs.
- For the *new AEDs* there is no clearly defined "therapeutic range".

PHARMACO KINETICS

DRUG	Protein binding	Clearance	T1/2 (hrs)	Therapeutic level Mcg/ml	PK Interaction	Withdrawl over
РНТ	90	100% H	12-60 Dose dependent	10 - 20	YES	4 wks
CBZ	75-85	100% H	SD 20-55 Chr Rx 10-30	6 - 12	YES	4wks
VPA	75-95	100% H	6-18	50 - 100	YES	4wks
LEV	<10%	66% renal	4-8	20 -60	No	

Antiepileptic Drug Interactions

Induce metabolism of other drugs:

Carbamazepine

Phenytoin

Phenobarbital

Primidone

Inhibit metabolism of other drugs:

Valproate

Felbamate

Topiramate

Neither inducer/inhibitor

Gabapentin Lamotrigine Pregabalin Tiagabine Levetiracetam Zonisamide

AEDs in Neurosurgery

AEDs that are highly protein bound:

Valproate

Phenytoin

Tiagabine

Carbamazepine

Oxcarbazepine

Topiramate

Adverse Effects

Acute dose-related—reversible

- Idiosyncratic
 - uncommon
 - potentially serious or life threatening

Chronic—reversibility and seriousness vary

Adverse effects (dose-related)

- Dizziness, Fatigue, Ataxia, Diplopia: all AEDs
- Irritability : levetiracetam

- Weight loss/anorexia : topiramate, zonisamide, felbamate
- Weight gain :
 - valproate
 - (also associated with polycystic ovarian syndrome) carbamazepine, gabapentin, pregabalin

Adverse Effects of AEDs: Serious

- Typically Idiosyncratic:
- Renal stones topiramate, zonisamide
- Anhydrosis, heat stroke topiramate
- Acute closed-angle glaucoma
 topiramate
- **Hyponatremia** carbamazepine, oxcarbazepine

Adverse Effects of AEDs: Serious

- Typically Idiosyncratic:
- Aplastic anemia

Valproate, Carbamazepine, Felbamate, Zonisamide,

- Hepatic Failure Valproate, Felbamate, Lamotrigine, Phenobarbital
- **Peripheral vision loss** Vigabatrin
- **Rash** Phenytoin, Lamotrigine, Zonisamide, Carbamazepine

Risk of "dangerous or even fatal skin reactions" such as **Steven-Johnson Syndrome** and **Toxic epidermal necrolysis** is incrased in patients with **HLA-B*1502 allele** Estimated absolute risk for those with the allele: **5%**

LONGTERM ADVERSE EFFECTS

Endocrine/Metabolic Effects

- Osteomalacia, osteoporosis
 - Carbamazepine
 - Phenobarbital
 - Phenytoin
 - Oxcarbazepine

Neurologic

- Neuropathy
- •Cerebellar Syndrome

phenytoin

- Folate deficiency (anemia, teratogenesis)
 - Phenobarbital
 - Phenytoin
 - Carbamazepine
 - Valproate
- Altered connective tissue metabolism or growth

(facial coarsening, hirsutism, gingival hyperplasia or contractures)

- Phenytoin
- Phenobarbital

Starting AEDs

- Discuss likely adverse effects
- Discuss unlikely but important adverse effects
- Discuss likelihood of success
- Discuss recording/reporting seizures, adverse effects, potential precipitants

Choosing Antiepileptic Drugs

- Limited placebo-controlled trials available, particularly of newer AEDs
- Several drugs are commonly used for indications other than those for which they are officially approved/recommended
- For partial epilepsy depends on drug side-effect profile & patient's preference/concerns
- For generalized epilepsy depends on

predominant seizure type(s) , drug side-effect &
patient's preference/concerns

ILAE Summary Guidelines and Summary of AAN evidence-based guidelines

CHOOSING ANTIEPILECTIC DRUGS

	PARTIAL SEIZURES	GTCS	ABSENCE SEIZURES	MYOCLONIC SEIZURES
BEST EVIDENCE	Carbamazepine Oxcarbamazepine Phenytoin Topiramate	Valproate Topiramate	Ethosuximide Valproate	Valproate Levetiracetam Clonazepam
alternatives	Lamotrigine Gabapentine Levetiracetam Valproate Phenobarbitol Pregabilin Zonisamide	Phenytoin Carbamazepine Levetiracetam Lamotrigine	Lamotrigine Levetiracetam Clonazepam Topiramate Felbamate	Zonisamide Topiramate
2/28/11		AEDs in Neurosurgery		23

Antiepileptic Drug: Monotherapy

- Simplifies treatment
- Reduces adverse effects
- Eighty percent of seizures can be controlled with monotherapy
- Monotherapy with different drug should be tried before 2 drugs together
- Conversion to single drug from multiple drugs
 - Eliminate sedative drugs first (barbiturate/benzodiazepine)
 - Withdraw antiepileptic drugs slowly over several months

Discontinuing AEDs

Seizure freed	lom for ≥2	years
---------------	------------	-------

implies overall >60% chance of success

• Favorable factors

- Control achieved easily on one drug at low dose
- No previous unsuccessful attempts at withdrawal
- Normal neurologic exam and EEG
- Primary generalized seizures except JME

Consider relative risks/benefits (e.g., driving, pregnancy)

Practice parameter. Neurology. 1996;47:600–602.

Pregnancy and AEDs:

- **EPTOIN** : Fetal Hydantoin Syndrome
- **VALPROATE** : Neural tube defects
- OTHER CONGENITAL MALFORMATIONS
- Cardiac defects
- Genitourinary defects
- Oral clefts

- Risk with AED monotherapy 4.5% (OR 2.6)
- Risk with Polytherapy 8.6% (OR 5.1)

Holmes et al. N Engl J Med. 2001;344:1132–1138. [PubMed]

Consensus

- Monotherapy with lowest dose CBZ
- Folate supplementation in all

Lactation and AEDs

- Breastfeeding should be encouraged unless clear risk posed
- Probably safe:
 - Carbamazepine
 - Phenytoin
 - Valproate
 - Lamotrigine
- "Use with caution" in lactating women:
 - Primidone
 - Phenobarbital
 - Ethosuximide

Pennell et al. Epilepsy and Behavior. 2007. 11: 263-9

Drug	Dose/ dosing frequency	Remarks	Therapeutic level Mcg/ml	Adverse effects	
Phenytoin	300–400 mg/d (3–6 mg/kg, adult; 4–8 mg/kg, child); od-bid	Loading dose: 20 mg/kg @ <50 mg/min infusion Cardiac monitoring check BP	10 - 20	Gum hyperplasia Lymphadenopathy Hirsutism Osteomalacia Hyperglycemia Dizziness Diplopia Ataxia Incoordination	
Carbamazepine	600–1800 mg/d (15–35 mg/kg, child); bid-qid	Start low and increase slowly Oral form only	6- 12	Aplastic anemia Leukopenia Hyponatremia	
Valproate	750–2000 mg/d (20–60 mg/kg); bid-qid	Start 15 mg/kg/day Increment wkly 5-10mg/kg/day	50 - 100	Hepatotoxicity Thrombocytopenia Hyperammonemia Pancreatitis	
levetiracetam	1000–3000 mg/d; bid		20 - 60	Sedation Fatigue Incoordination Psychosis	29
2/28/11		AEDS IN Neurosurgery			20

Thank you